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Abstract. With improving acquisition technologies, the inspection and
monitoring of structures has become a field of application for deep learn-
ing. While other research focuses on the design of neural network ar-
chitectures, this work points out the applicability of transfer learning
for detecting cracks and other structural defects. Being a high-performer
on the Cityscapes benchmark, hierarchical multi-scale attention [43] also
renders suitable for transfer learning in the domain of structural defects.
Using the joint scales of 0.25, 0.5, and 1.0, the approach achieves 92%
mean intersection-over-union on the test set. The effectiveness of multi-
scale attention is demonstrated for class demarcation on large scales and
class determination on lower scales. Furthermore, a line-based tolerant

intersection-over-union metric is introduced for more robust benchmark-
ing in the field of crack detection. The dataset of 743 images covering
crack, spalling, corrosion, efflorescence, vegetation, and control point is
unprecedented in terms of quantity and realism.

Keywords: Deep learning ➲ Structural defects ➲ Crack detection ➲ Hier-
archical multi-scale attention.

1 Introduction

The field of structural health monitoring (SHM) deals with the regular inspection
and assessment of engineering structures, such as bridges, to ensure their safe
use. With the ongoing digitalization in SHM, the amount and quality of imagery
of critical infrastructure is successively growing. Automated image-based detec-
tion of structural defects can substantially support the human decision makers
in assessing the operationality of a structure. An appropriate set of images can
serve several purposes, including the 3D reconstruction and maintenance of a
digital twin of the structure. Furthermore, high-quality imagery can effectively
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be used for non-destructive SHM. One informative surface property for condi-
tion assessment is the formation of cracks. Other defects, however, also provide
substantial insights, defects such as spalling, corrosion, efflorescence, and veg-
etation. Furthermore, for purposes of georeferencing, control points constitute
another worthwhile class for automated detection.

Unlike other work in the domain, that dedicates to the design of suitable
artificial neural network architectures, the here presented work applies transfer
learning. For that purpose, a high-ranking approach in the Cityscapes bench-
mark [10] with accessible code is used, the hierarchical multi-scale attention
(HMA) approach by [43]. The effectiveness of HMA for semantic segmentation
of structural defects is demonstrated and the role of multi-scale attention further
investigated. For all classes except spalling, larger scales seem to draw more at-
tention towards class demarcation, while smaller scales rather engage in content
determination.

The plausible evaluation of detection performance is key to advancements
in the field. The appropriateness of area-based metrics, such as F1 score and
intersection-over-union (IoU), for crack detection are debatable. Cracks can con-
ceptually rather be considered as lines, thus, the here introduced metric of line-
based tolerant IoU can support more robust benchmarking.

The contributions of this work are fourfold: (1) The creation of a dataset1

that is unprecedented with respect to realism and classes. (2) A demonstration of
the applicability of transfer learning to a state-of-the-art semantic segmentation
approach for the domain of structural defects2. (3) An analysis of the role of
attention in multi-scale fusion of different classes. And (4) the presentation of
the line-based tolerant IoU evaluation metric that is more appropriate for crack
segmentation.

2 Related work

The related work covers the detection of structural defects resp. anomalies, which
include cracks, and the field of transfer learning.

2.1 Anomaly Detection

In recent years, the emergence and utilization of data-driven methods in im-
age processing as well as the potential impact in SHM has fueled the research
activity in image-based anomaly detection. In the context of structural health
monitoring, the term anomaly refers to irregularities in the structure that poten-
tially impede its functionality. Here it is interchangeably used with (structural)
defects.

Cracks form one prominent class of defects. Due to the high relevance for
SHM, the attention on visual crack detection has steadily been growing [32].

1 The dataset is available at https://github.com/ben-z-original/s2ds.
2 Code is available at https://github.com/ben-z-original/detectionhma

https://github.com/ben-z-original/s2ds
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Especially approaches based on convolutional neural networks (CNN) have had
a large impact on the field of image-based object detection [11,26,41,42,22] and
are increasingly used for crack detection. Image classification is one conceptual
approach to crack detection, where each patch of the image receives a positive or
negative response. [13] provides a comparatively large dataset, SDNET, and e.g.
[12,48,37] propose image classification-based CNNs for crack detection. With
the introduction of fully-convolutional neural networks (FCN) [31], semantic
segmentation – producing dense, pixelwise predictions – have become the natural
approach for many applications, including crack detection: The more precise
localization facilitates further geometric analysis such as crack width estimation,
cf. [3].

Among the fully-convolutional approaches to crack detection are [46,45,30,54]
[29,15]. [30] propose a network topology based on U-Net [40] and demonstrate
its superiority over a simpler FCN design. U-Net makes use of skip connections
between encoder and decoder to convey information from earlier stages to later
stages of the model. Conceptually similar but more elaborated topologies are
used by [54,29], who independently introduce a separate fusion stage: Skip con-
nections do not map from encoder to decoder, but to a separate fusion module.
This module, a cascade of convolutional layers, is fed from different scales of
encoder and decoder and, through upsampling and fusion, derives a prediction.

With transformer approaches gaining more relevance in visual applications
[14,6,51], they have also been explored for crack detection. [28] extend the Seg-
Net approach [2] by self-attention modules in order to exploit long-range depen-
dencies of cracks. While the convolutional mechanism is meant to capture fine
details of thin cracks, the attention module is designed to form a continuous
crack representation.

Providing substantial insights into the health of a structure, the image-based
detection of structural defects, other than cracks, has also gained attention.
Classification-based detectors for corrosion and spalling are proposed, by e.g.
[1,34,39,17,18], while others [33,25,16,23,24] choose segmentation approaches at
pixel-level. [25,16] for instance, use, investigate, and show the applicability of
the U-Net for corrosion detection, even though inconsistently outperformed by
the FCN. [33] create a synthetic dataset and achieve IoUs of roughly 40% for
exposed reinforcement bar (similar to corrosion) and concrete damage on a very
small real-world test set. Concrete damage and its severity are also targeted by
[36], who use a bounding box-based detection approach to localize defects. Being
also applied by [7], the bounding box approach, however, appears inappropriate
for less compact defects such as cracks. [38] use mold, stain, and deterioration
as classes and retrain VGG [41] for classification.

2.2 Transfer Learning

While most of the related work engages in designing a network architecture, cus-
tomized for anomaly detection, transfer learning is rather exceptionally applied.
Transfer learning refers to a learning process, where the learner must perform
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multiple different, but related tasks [20]. In the context of artificial neural net-
works, it typically refers to a change in targets, such as the visual categories to be
classified. The underlying assumption is that different targets share low-level fea-
tures and, thus, can mutually benefit. The effectiveness of transfer learning has
been demonstrated for various tasks, including domain adaptation and learning
from little data.

The success of transfer learning being one reason for most of the deep learning
libraries to provide a model zoo, a collection of established deep learning models,
such as [22,8,9]. The DeepLab approach [8,9] uses an encoder-decoder design and
atrous spatial pyramid pooling (ASPP), to efficiently extend the receptive field.
An effective source for performance comparison is provided through benchmark-
ing challenges such as Cityscapes [10], KITTI [19], COCO [27], or ADE20K [52].
At the time of experimentation, hierarchical multi-scale attention (HMA) [43]
was the best performing model in the Cityscapes semantic segmentation chal-
lenge with accessible code. It was, thus, considered to be a powerful approach
for a domain adaptation to structural defects through transfer learning.

3 Data

Even though growing, the number of publicly available datasets for structural
defects is rather limited. For cracks a number of datasets are available, such as
[53,54,29,13]. They differ in annotation style (image-, line-, segmentwise), repre-
sented surfaces (asphalt, concrete, stone, etc.), and level of difficulty (presence
of crack-resembling artifacts). Datasets for structural defects other than cracks
are less common or incomplete, e.g. [35,4]. Potential reasons are low accessi-
bility of defects on structures, vagueness of defect boundaries, high variance of
surfaces and structures, high annotation effort (involving experts), and commer-
cially induced reluctance to data publication. Due to lack of data, [33] created
a synthetic dataset.

Table 1: Overview of the structural defects dataset (S2DS).
Training Validation Test

Class Images Pixels Area Images Pixels Area Images Pixels Area

Background 556 519.9M 88.1% 87 83.8M 91.9% 93 87.7M 90.0%
Crack 180 0.6M 0.1% 25 0.1M 0.1% 27 0.1M 0.1%
Spalling 151 39.2M 6.6% 23 3.3M 3.6% 20 4.2M 4.3%
Corrosion 209 8.8M 1.5% 36 0.5M 0.6% 38 0.9M 0.9%
Efflorescence 96 4.6M 0.8% 13 0.6M 0.7% 17 1.5M 1.5%
Vegetation 97 15.7M 2.7% 16 2.7M 2.9% 18 2.9M 2.9%
Control Point 70 1.5M 0.3% 9 0.2M 0.2% 10 0.2M 0.3%

Total 563 590.35M 100% 87 91.23M 100% 93 97.52M 100%
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Scarcity and inappropriateness of the available datasets rendered necessary
the creation of a suitable dataset, the structural defect dataset, S2DS. For that
purpose, 743 patches of size 1024×1024 px were extracted from 8,435 images
taken by structural inspectors at real inspection sites. The images were acquired
with various different camera platforms, such as DSLR cameras, mobile phones,
or drones (UAS). The quality and resolution of many of the images were in-
sufficient for usage due to invisibility of defects or severe blur. A considerable
number of selected patches, however, still vary in quality, i.e. in sharpness, light-
ing conditions, and color constancy. The images were selected and labeled by
one trained computer scientist. For highest diligence and accuracy in labeling
finest cracks, the scaling and blending options in the available annotation tools
were too limited. These limitations and the comparatively low number of images
rendered GIMP a suitable tool for annotation. Table 1 provides an overview of
the dataset. Figure 3 and 4 in the results section convey a visual impression of
the dataset. The dataset was manually split into subsets of 75% for training, 12%
for validation, and 13% for testing. In order to get a realistic assessment given
proper image material, only images with a fair chance of recognition made their
way into the test set. For the other subsets, however, images with blurry, poorly
resolved, or hardly visible defects were considered to enrich the yet relatively
small training set. Due to the nature of the classes, the dataset is highly unbal-
anced with respect to the number of pixels and area per class. The imbalance in
the number images is due to the imagery provided by structural inspectors: the
prevalence of cracks, spalling, and corrosion as well as their major relevance for
structure inspection, lead to higher amounts of image material of these classes.
The imbalance in the number of pixels indicates the global underrepresentation
of the crack class, which is, furthermore, confirmed by the relative occupation
in terms of area.

The selected portfolio of classes contains crack, spalling, corrosion, efflores-
cence, vegetation, and control point: cracks represent linear fractures in the
material, spalling refers to a material detachment from the surface, corrosion de-
notes the rust formation by oxidizing metal parts, efflorescence are depositions
of dissolved chemicals on the structure’s surface, vegetation refers to surficial
plant growth, and control points are geodetic fiducial markers for georeferenc-
ing. Control points do not form a class of structural defects. They are, however,
substantial for georeferencing and SHM and, thus, are included and, for simplic-
ity, referred to as structural defects in this work.

4 Hierarchical Multi-Scale Attention

At the time of experimentation HMA [43], was the highest ranked approach
with publicly accessible code in the pixel-level semantic segmentation bench-
mark of Cityscapes [10]. It has recently been surpassed by [5], who introduce a
structured boundary-aware loss. Applying this loss to HMA, an improvement of
0.5% points was achieved on the benchmark. As of May 2022, HMA occupies
the second place of approaches with published code and the tenth place in the
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overall competition. It, thus, can still be considered a state-of-the-art approach
to semantic segmentation.

CNNs often struggle with the detection of objects that occur in various sizes
[44]. To incorporate multiple scales, HMA proposes a dynamic combination of
results from different scales based on simultaneously generated attention maps.
The attention maps are contrastively learned based on two scales only. For in-
ference, however, the number of scales can be arbitrarily chosen.
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Fig. 1: Hierarchical multi-scale attention (HMA). Based on [43].

Figure 1 provides a high-level overview on the training and inference proce-
dure. During training, the input image passes through the backbone (HRNet-
OCR) [47] and the head for semantic segmentation in two different scales. On
the smaller scale, the image additionally runs through the attention head. The
attention head returns high values for image regions that obtain high attention
for the given scale. For low-attention regions the results from the other scale
gain higher relevance.

A recursive application of contrastive attention allows for arbitrarily many
scales in inference, cf. Figure 1 (bottom). The results from the two larger scales
are merged, weighted by the pixel-wise attention. These weighted results are
again weighted and fused based on the attention maps from the next scale.
The scales shown in Figure 1 represent the scales actually used for training and
inference for structural defects.

HMA uses the HRNet-OCR [47] as backbone, where OCR refers to object-
contextual representations. [47] splits the image into regions, for which a region
representation is computed by aggregation of pixel representations. Based on
the relation of pixels and regions, an object-contextual representation is derived,
that augments the pixel’s representation. Each pixel, thereby, obtains more in-
formation about its context.



Image-based Detection of Structural Defects 7

The fully-convolutional head used for semantic segmentation consists of (3×3
conv) → (BN) → (ReLU) → (3×3 conv) → (BN) → (ReLU) → (1×1 conv) [43].
The attention head is, apart from the number of outputs, structurally equivalent
to the semantic head. Furthermore, there is an auxiliary semantic head docking
to HRNet, before OCR (not shown in Figure 1).

HMA uses the region mutual information (RMI) loss introduced by [50],
where Lall composes of a cross-entropy component Lce and a component repre-
senting mutual information (MI) resp. Il:

Lall(y, p) = λLce + (1− λ)
1

B

B
∑

b=1

C
∑

c=1

(−I
b,c
l (Y;P)) (1)

Il(Y;P) = −
1

2
log(det(ΣY|P)). (2)

λ represents the weighting factor, B the number of batches, C the number of
classes. Based on the assumption that pixels do not show local independence, the
neighborhood around the pixel is incorporated into the MI computation: Y and
P form matrices of the ground truth and predictions around the pixel. Equation 2
shows the calculation of RMI by taking the negative log of the determinant of
the covariance matrix of Y and P. A higher pixel-wise correlation in the region
leads to larger determinants, increasing Il and decreasing the MI component in
Equation 1.

During training, data augmentation was used to compensate for the compar-
atively low amount of data. Scaling, rotation, and shifting are applied to 80%
of the samples during training. The images are cropped, if needed, and 20% of
the samples obtain 3×3 Gaussian blur. The sampling of patches during training
is controlled, such that at 50% of the patches contain defects while the other
half does not. Furthermore, boundary tolerance is used in order to account for
annotation inaccuracies and uncertainties at class boundaries.

5 Results

In the following, the relevant metrics are introduced, the performance of HMA
for different scales is investigated, the attention maps are analyzed, and, finally,
benchmarking for crack detection is performed.

5.1 Metrics

Intersection-over-union (aka IoU or Jaccard index) forms the standard evaluation
measure for semantic segmentation as applied in benchmarks such as Cityscapes
[10] or ADE20K [52]. For evaluating crack segmentation, other measures have
been proposed, such as ODS, optimal dataset scale, and OIS, optimal image
scale, cf. [54,45,28]. Both metrics compute the F1 score, ODS conditioned by
the optimal threshold over the entire dataset and IDS for each individual image
being optimally thresholded.
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Label
F1: 1.000
IoU: 1.000

ltIoU: 1.000

DeepCrack18
F1: 0.707
IoU: 0.546

ltIoU: 0.994

DeepCrack19
F1: 0.842
IoU: 0.727

ltIoU: 0.999

HMA
F1: 0.456
IoU: 0.295

ltIoU: 0.979

Fig. 2: Evaluation metrics applied on predictions of different approaches. A tol-
erance of 4 px is used for ltIoU.

Neither IoU nor ODS and OIS appear to be ideal metrics for the assessment of
crack detection. Both are sensitive towards the area occupied by a crack, favoring
wider compared to more narrow cracks. They consider all pixels, including those
at the crack boundary, where class membership is regularly uncertain. As a
consequence, an approach is proposed that abstracts from area and takes into
account the line-like structure of cracks. For that purpose, the true positives
(TP), the false negatives (FN), and the false positives (FP) are computed by:

TP = S(T )
⋂

[

S(P )⊕ C(θ)
]

(3)

FP = S(P ) \
[

S(P )
⋂

[

S(T )⊕ C(θ)
]]

(4)

FN = S(T ) \
[

S(T )
⋂

[

S(P )⊕ C(θ)
]]

= S(T ) \ TP (5)

T refers to the binary image that represents the ground truth, P to the
binary image of predictions, S(·) a skeletonization or thinning method – such
as [49,21] – that transforms areas into lines resp. medial axes. Furthermore, C
is a circular morphological element with diameter θ that is used for dilation
operation ⊕. The diameter θ represents the applied tolerance around the medial
axis of each, ground truth and prediction. The line-based tolerant intersection-

over-union metric is defined as ltIoU = TP
TP+FP+FN

using TP, FP, and FN from
above.

Figure 2 shows three different predictions for a crack patch, DeepCrack18
[54], DeepCrack19 [29], and the here presented HMA [43]. The top left shows
the label. The robustness of ltIoU towards the width of prediction is demon-
strated by the relatively stable, close to perfect value of ltIoU, while F1 and
IoU vary distinctively. Note that ltIoU is inappropriate if the results from crack
segmentation also serve crack width estimation.

5.2 Scales

For assessing the performance of the HMA with respect to all classes, the stan-
dard IoU is used. Table 2 shows the IoU for each class conditioned by the scales
used for inference. Generally, the inclusion of more scales leads to higher mean
IoU, even though the combination of [0.25, 1.0] produces decent results as well.



Image-based Detection of Structural Defects 9

a b c d e

f g h i j

k l m n o

p q r s t

Fig. 3: Qualitative results of HMA on the test set. Classes: crack (black), spalling
(red), corrosion (orange), efflorescence (blue), vegetation (green), and control
point (purple).
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Table 2: Effects of different scales of HMA on the S2DS dataset.
Intersection-over-Union [%]

D
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d
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in
g

C
o
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si
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n

E
ffl
o
re
sc
en
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V
eg
et
a
ti
o
n

C
o
n
tr
o
l
P
o
in
t

R
u
n
ti
m
e
(r
el
.)

V
a
li
d
a
ti
o
n

[1.0] 77 96 89 69 79 34 70 99 1.0

[0.25, 1.0] 86 98 88 80 90 74 72 99 1.3

[0.5, 1.0] 82 97 90 81 87 53 69 99 1.2

[0.75, 1.0] 78 96 90 74 85 31 69 99 1.3

[1.0, 1.5] 75 96 87 64 77 34 70 99 1.6

[0.5, 1.0, 2.0] 82 97 86 80 87 53 69 99 2.1

[0.25, 0.5, 1.0] 87 98 87 83 90 76 72 99 1.4

[0.25, 0.5, 0.75, 1.0] 87 98 87 84 90 76 72 99 1.6

T
es
t

[0.25, 0.5, 1.0] 92 99 91 91 88 90 87 100 –

Seemingly, the scale 0.25 contributes to a better detection of the efflorescence.
Unlike for the original HMA – which uses [0.5, 1.0, 2.0] for semantic segmen-
tation of street sceneries – including scale 2.0 does not have a positive impact
on performance. An explanation might be that the larger scale does not add
information, especially not to the detection of fine structures and boundaries.
The overall best combinations are [0.25, 0.5, 1.0] and [0.25, 0.5, 0.75, 1.0]. Due
to the slightly lower relative runtime, and the lower memory footprint, [0.25, 0.5,
1.0] is chosen for deployment.

When applied to the test set, Table 2, the overall performance as well as
the performance on each class individually improves. This behavior, which is
atypical for artificial neural networks, is caused by the higher quality of data in
the test set. Due to lack of data, the training and validation set were populated
with images of lower quality, in order to hopefully benefit training. Detection
on these images was, however, considered optional. The test set, on the other
hand, only contains images where detection is considered mandatory. Qualitative
results on the test set are presented in Figure 3.

5.3 Attention

Figure 4 illustrates how – mediated by attention – the three different scales
contribute to the overall prediction. The top row of each example displays the
input image alongside the fused prediction. Below, the attention maps (left) and
the corresponding predictions (right) are shown for the three different scales
0.25, 0.5, and 1.0. The attention maps result from a pixelwise softmax across
the scales and provide a pixelwise weighting, i.e. the contribution of each pixel
of a scale for the overall prediction. Brighter regions in the attention maps refer
to higher attention and darker regions to lower attention.
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a b c d

0.25×

0.5×

1.0×

Fig. 4: Attention maps for multiple scales. The input image is displayed in the
upper left; right beside the fused prediction. Below the per-scale attention maps
are shown with corresponding predictions. Classes: crack (black), spalling (red),
corrosion (orange), efflorescence (blue), vegetation (green), and control point
(purple).

It can be observed that for all classes, despite spalling, the highest scale
(1.0×) shows strong activation of attention around the defect. The defect itself,
however, obtains lower attention. On the lowest scale (0.25×) the reverse applies:
while the vicinity of the defect shows darker areas which correspond to lower
attention, higher attention is paid to the defect itself. This observation applies
to crack, corrosion, and efflorescence, whereas control point and vegetation show
a similar pattern with less activation on the low scale.

A potential interpretation for this observation is that the highest scales are
responsible to determine the point of transition from defect to background for
accurate boundary demarcation. Lower scales, on the other hand, possibly rather
determine the content of the defect. While the shape of boundary is arbitrary
for all defects other than crack and control point, the intensity and color can be
characteristic: crack is relatively dark, efflorescence relatively whitish, corrosion
has a brownish and vegetation a greenish hue. It is conceivable that these color-
related aspects receive more considerations on lower scales.

Contrasting the above observation, spalling seems to show reverse behavior.
Lower scales show higher activation in the vicinity and lower activation at the
defect itself. On higher scales, the attention at the location of the defect is,
however, higher than for other classes. Since the detachment of material causes an
edgy and peaky texture in the spalling, it can be conjectured that those relevant
details vanish or blur on lower scales. Thus, these features require attention on
the highest scale for spalling classification.
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5.4 Benchmark

No benchmark is yet available for structural defects as represented in the S2DS
dataset. S2DS is rather intended to form a first such benchmark. Certainly,
more data need to be acquired and made available to the public, in order to
obtain better generalizing models. For crack detection, however, datasets and
approaches are available for benchmarking. As pointed out above, IoU does not
appear to be a proper metric, which therefore is replaced by ltIoU for the given
evaluation.

Table 3: Performance comparison with other approaches and datasets for crack
detection. F1 conforms to the ODS metric.

Tol.
Dataset

DeepCrack18 DeepCrack19 HMA
[px] F1 ltIoU F1 ltIoU F1 ltIoU

0
CRKWH100 0.721 0.564 0.559 0.388 0.521 0.353
DeepCrack 0.344 0.208 0.881 0.787 0.815 0.688
S2DS 0.080 0.041 0.347 0.210 0.862 0.758

2
CRKWH100 0.920 0.853 0.735 0.581 0.628 0.458
DeepCrack 0.405 0.254 0.923 0.857 0.844 0.730
S2DS 0.156 0.084 0.384 0.238 0.937 0.881

4
CRKWH100 0.951 0.906 0.781 0.641 0.644 0.475
DeepCrack 0.427 0.271 0.938 0.884 0.856 0.749
S2DS 0.162 0.088 0.402 0.252 0.949 0.903

8
CRKWH100 0.965 0.932 0.826 0.703 0.659 0.491
DeepCrack 0.448 0.288 0.952 0.908 0.870 0.769
S2DS 0.166 0.090 0.430 0.274 0.960 0.922

16
CRKWH100 0.972 0.945 0.873 0.775 0.680 0.516
DeepCrack 0.474 0.310 0.962 0.928 0.884 0.793
S2DS 0.170 0.093 0.476 0.312 0.967 0.936

32
CRKWH100 0.976 0.954 0.915 0.844 0.718 0.560
DeepCrack 0.518 0.349 0.972 0.946 0.901 0.819
S2DS 0.176 0.096 0.538 0.368 0.972 0.946

Table 3 shows three approaches, DeepCrack18 [54], DeepCrack19 [29], and
the here presented HMA [43] applied to three datasets, CRKWH100 [54], Deep-
Crack [29], and the presented S2DS. The publication of code has not yet become
standard practice in crack detection. DeepCrack18 [54] and DeepCrack19 [29],
however, are prominent approaches with working code and are used by others
for benchmarking, e.g. [28]. CRKWH100 [54] and DeepCrack [29] are the ac-
companying datasets and regularly serve for benchmarking. The CRKWH100
contains thin pavement cracks, DeepCrack covers various types of cracks, and
S2DS mainly represents cracks in concrete walls. Six levels of tolerance for the
positioning of the medial axis are investigated.

Generally, F1 and ltIoU improve with higher tolerance. Even though at tol-
erance level 16 and 32 px saturation effects can be observed, i.e. more tolerance
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does not lead to distinctively better performance. This point can be considered
the currently best possible performance of the classifier. All approaches perform
best on the datasets created in their context. There are, however, differences with
respect to the generalization capabilities. While DeepCrack18 shows at most
mediocre performance on datasets other than CRKWH100, the performance of
HMA also deteriorates on the other data, but less severely. On CRKWH100, the
HMA regularly shows activation for the spalling class. This confusion might be
rooted in the occasional textural similarity of pavement and spalling. It, however,
raises the question, if pavement crack detection and spalling detection can be
reasonably represented in a single approach. Based on the benchmarking results
can be stated that a domain gap exists, particularly with respect to pavement
cracks, which, though, might be bridgeable even with HMA.

6 Conclusion

In the context of this work, a dataset was created for multi-class classification of
several structural defects. This dataset is unprecedented in quantity and qual-
ity and is intended to form a first benchmarking dataset in the domain. While
other researchers focus on the design of suitable artificial neural network archi-
tectures, it is demonstrated that by means of transfer learning on the state-of-
the-art approach of hierarchical multi-scale attention [43] a decent performance
can be achieved. Network design can, however, be appropriate if a relatively
small, application-tailored model is required, e.g. for deployment in an embed-
ded platform on a UAS.

Furthermore, the investigation of attention revealed the relevance of large
scales for demarcating class boundaries. Smaller scales, on the other hand, show
higher activation directly at the defect, which led to the conjecture, that they
contribute to determining the proper class. Justifications for spalling not con-
forming to this pattern was given by the high degree of details in the textural
pattern only perceivable on larger scales.

It is claimed, that standard evaluation metrics, such as F1 and IoU, are
not appropriate for evaluating crack segmentation. The measures conceptually
evaluate the overlap of areas. Cracks are, however, rather line-like structures
and, thus, require other metrics for plausible comparison. For that purpose, the
ltIoU was introduced, which reduces a prediction to a medial axis and assesses
the intersection and union of medial axes of ground truth and prediction given a
certain positional tolerance. Note that the measure is, however, unsuited if the
predictions are directly used for crack width estimation. By means of ltIoU an
intra-domain gap could be observed in benchmarking: the performance of crack
detection very much depends on the data available during training. This holds
for the background, e.g. pavement being mistaken for spalling, or distractive
artifacts, such as concrete texture falsely classified as cracks. To come up with a
general approach to crack detection covering various different surfaces and crack
types remains an open challenge.
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